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Abstract. Automatic facial expression recognition is a research topic
with interesting applications in the field of human-computer interaction,
psychology and product marketing. The classification accuracy for an
automatic system which uses static images as input is however largely
limited by the image quality, lighting conditions and the orientation of
the depicted face. These problems can be partially overcome by using a
holistic model based approach called the Active Appearance Model. A
system will be described that can classify expressions from one of the
emotional categories joy, anger, sadness, surprise, fear and disgust with
remarkable accuracy. It is also able to detect smaller, local facial features
based on minimal muscular movements described by the Facial Action
Coding System (FACS). Finally, we show how the system can be used
for expression analysis and synthesis.

1 Introduction

Facial expressions can contain a great deal of information and the desire to au-
tomatically extract this information has been continuously increasing. Several
applications for automatic facial expression recognition can be found in the field
of human-computer interaction. In every day human-to-human interaction, in-
formation is exchanged in a highly multi-modal way in which speech only plays
a modest role. An effective automatic expression recognition system could take
human-computer interaction to the next level.

Automatic expression analysis can be of particular relevance for a number
of expression monitoring applications where it would be undesirable or even
infeasible to manually annotate the available data. E.g., the reaction of people
in test-panels could be automatically monitored and forensic investigation could
benefit from a method to automatically detect signs of extreme emotions, fear
or aggression as an early warning system.

Decades of research have already led to the development of systems that
achieve a reasonable expression classification performance. A detailed account



of all the advances on the field of automatic expression analysis can be found in
[17] or [10]. Unfortunately, most of the developed systems have large limitations
on the settings of their use, making them unsuitable for real-life applications.

The limitations in automatic expression classification performance are to
a large extend the result of the high variability that can be found in images
containing a face. If we do not want to be limited to a specific setting and if we
do not want to require active participation of the individuals depicted on the
images, we will see an extremely large variety in lighting conditions, resolution,
pose and orientation. In order to be able to analyze all these images correctly,
an approach seems to be desirable that can compactly detect and describe these
sources of variation and thus separate them from the actual information we are
looking for.

The Active Appearance Model (AAM) first described by Cootes and Taylor
[4] enables us to (fully) automatically create a model of a face depicted on
an image. The created models are realistic looking faces, closely resembling the
original. Previous research projects have indicated that the AAM provides a good
generalization to varying lighting / pose conditions as it is able to compactly
represent these sources of variations.

Many leading researchers in the field of expression classification have chosen
very different, local methods for classification. Local methods have the advan-
tage of potentiality achieving a very high resolution in a small area of the face.
However, as they lack global facial information, it will be very hard for a lo-
cal method to separate changes caused by differences in lighting or pose from
changes caused by expressions. Consequently, the local method will have rather
poor generalization properties. We do not want to limit ourself to situations
where we have high-resolution video material available either, but instead want
a single facial image to be sufficient. We have therefore chosen to use the holistic,
model based Active Appearance Model as our core technique. To make this sys-
tem fully automatic, a deformable template face framing method, very similar
to the one described in [20] is used preliminary to the AAM modeling phase.

The next section will describe the AAM implementation that was used for
this project (based on previous work by [16]). In section 3 we will show how
appearance models can be used to classify facial expressions based on two dif-
ferent categorization systems. Section 4 describes how we can further analyze or
synthesize facial expressions. Finally, we will come to a conclusion in section 5.

2 The Active Appearance Model

To train the AAM [4], we require the presence of a (manually) annotated set X
of facial images. The shape of a face is defined by a shape vector S containing
the coordinates of M landmark points in a face image I.

S = ((x1, y1), (x2, y2), ..., (xM , yM ))T

Landmark points are points in the 2D plane of a face image at easily dis-
tinguishable reference points, points which can be identified reliably in any face



image we might want to analyze. Considering the invariability of shapes under
Euclidian transformations, we can remove the effect of misplacement, size and
rotation by aligning each shape vector in the set of all shape vectors Xs to the
mean shape vector s̄, which can be implemented as an iterative procedure.

We then apply Principle Component Analysis (PCA) [13], which transforms
the shapes to a new low dimensional shape subspace in RD where D < 2M .
An element S from the original set of shapes can now be approximated by some
bs of length D where:

S ≈ Φs · bs + s̄ (1)

Where Φs is the covariance matrix consisting of the D principal orthogonal
modes of variation in Xs:
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within 99% of a normally distributed function:
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A texture vector of a face image is defined as the vector of intensity values
of N pixels that lie within the outer bounds of the corresponding shape vector:

T = [g1, g2, ..., gN ]T

Delauny triangulation [19] is performed on the texture maps to transform
them to a reference shape (the mean shape can be used for this). This results
in so called shape-free patches of pixel intensities, which should then be photo-
metrically aligned to remove the effect of general lightning differences. This can
again be done using an iterative approach.

Fig. 1. The mean face shape and the mean face texture aligned to the mean shape

PCA is then applied on the texture vectors, after which a texture vector T
from the original data set can be represented by a vector bt.

T ≈ Φt · bt + t̄ (2)



The elements in bt are again bounded by:
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Where λt
k represents the eigenvalue of the corresponding eigenvector across the

data set Xt.
The appearance model combines the two vectors bs and bt into a single para-

meter vector ba. First, the shape and texture vector are concatenated. Because
these two are of a different nature and thus of a different relevance, one of the
terms will be weighted:

bst =
(

wsbs

bt

)
Estimating the correct value for ws can be done by systematically displacing

the elements of the shape vector over the examples in the training set and calcu-
lating the corresponding difference in pixel intensity. As an alternative, we can
set ws as the ratio of the total pixel intensity variation to the total shape varia-
tion. PCA is then applied one last time to remove possible correlation between
shape and texture parameters and create an even more compact representation:

bst = Φaba (3)

We will refer to ba as the appearance vector from now on as it compactly
describes both the shape and the texture of an object.

The online task of the Active Appearance Model is to find a model instance
which optimally models the face in a previously unseen image (a model-fit).
Given a face image I, the AAM attempt to find the optimal model parameters
ba and the optimal pose parameters u = [tx, ty, s, Θ]T where tx and ty are trans-
lations in the x and y directions, s is the scaling factor and Θ is the rotation.

The difference vector δt = timage − tmodel defines the difference in pixel
intensity between input image and the model instance. By minimizing E = ||δt||2
we thus minimize the difference in pixel intensities. The method used by the
AAM for doing this assumes that the optimal parameter update can be estimated
from δt. Moreover, this relationship is assumed to be nearly linear.

A prediction matrix is used to update the model parameters ba and u in
an iterative way until no significant change occurs anymore. Usually, separate
prediction matrices are used for ba and u, so we have:

δba = Rba

δt and δu = Ruδt

The prediction matrices Rba

and Ru are learned from the training data by
linear regression using examples which are systematically displaced over one of
the model or pose parameters.

After obtaining the prediction matrices, parameters are updated in an itera-
tive way (ba ← ba+αδba and u← u+αδu) where α is a stepsize parameter, until
no significant change in error occurs anymore. Under this iterative approach, the
linearity assumption seems to hold well enough when the initial model placement
does not deviate too much from the actual position of the face in the image.



3 Expressions and Classification

In order to create a system that can automatically derive meaningful expression
information from a face, it might prove important to have a clear and formalized
method of describing the expression on a face, for which several methods have
been proposed. We describe two commonly used classification systems for facial
expressions and then present our results.

3.1 Facial Action Coding System (FACS)

The Facial Action Coding System (FACS) presented by Ekman & Friesen in
1978 [7] is by far the most used system. It codes the various possible facial
movements based on an analysis of the facial anatomy. FACS contains a list of
approximately (depending on the specific revision) 46 minimal facial movements
called ‘Action Units’ and their underlying muscular basis. Over the years, this
system has become a standard for coding facial expressions. The original system
has undergone a major revision in 2002 [9] and extended to include gradations
of activation for the Action Units (AUs).

Using FACS, practically all facial cues can be accurately described in terms of
Action Units, which appear to be the smallest possible changing units in a face.
This makes it a very powerful system to accurately annotate facial expressions.

The only major downside to this approach is the fact that no or little meaning
can be attached to the activation of one of the Action Units. E.g., to know that
the Levator palpebrae superioris is contracted is information that might only be
relevant for a very select number of applications. Instead, a categorization based
on the meaning expressions convey may be more useful for most applications.

3.2 Emotional expressions

Many expressions carry an emotional content with them. The exact relation-
ship between expressions and emotions has been studied extensively, which has
resulted in several theories. For a detailed discussion see [11, 8, 18, 6].

Already in 1970, P. Ekman reported the existence of 6 universal facial ex-
pressions related to the emotional states: anger, disgust, fear, joy, sadness and
surprise [5]. A constant debate on whether these expressions are really universal,
or vary by culture, has been going on ever since.

Obviously it is not the case that any expression can be classified into one
of Ekman’s 6 emotional expression categories [12]. Facial movements can be of
varying intensity and there are blends of emotional expressions and variations
within a category. Also, there are facial movements which are meant only for
conversational purposes or are considered idiosyncratic. However, if we do want
to make a categorization of expressions based on emotions, Ekman’s universal
emotional expressions might be an obvious choice, for the system is already
widely used and categories that are made represent clear concepts, making them
intuitively easy to deal with.



3.3 Automatic emotion expression classification

In the previous section, we described how the AAM can be used to derive a
realistic model of a depicted face. There are several ways to extract a compact
representation of the facial features using this model. After a model fit has been
created, the accurate position of a face is clear and so are the locations of all
the key points in the face (the landmark points). This introduces two promising
options. First, accurate image slices can be made of selected regions of the face to
be used directly by a classifier or after applying a ‘smart’ compression. However,
an easier option seems to exist. The face model which has been constructed
is represented entirely by a very compact vector (the appearance vector). This
appearance vector could be perfectly suitable for use as input for a classification
method, if it contains all relevant information needed to distinguish between the
different expression classes. Previous experiments [21, 14] have shown that this
latter option gives far better results.

Our goal is to come to a classification of all the 6 universal emotional expres-
sions, plus the neutral expression. In principle, we can achieve this by creating
and training 7 independent classifiers. We used neural networks trained with
backpropagation since these have been proven their abilities for pattern recog-
nition tasks [1]. The final expression judgement of a face image could then be
based on the network with the highest output. Experiments have shown, how-
ever, that the networks resulting from this procedure miss what you might call
‘mutual responsiveness’. When observing a series of images, where one emo-
tional expression is shown with increased intensity, one would expect the output
of one network to increase and the outputs of the other networks to automat-
ically decrease or level out to zero. However, this behavior does not appear in
all situations and not seldom are there several or no networks at all with a high
output, even though this situation does not appear in the training data.

We can create more favorable behavior by training one classification network
with 7 outputs for the different emotional categories. This also boosts overall per-
formance significantly. We used a 3-layer feed-forward neural network, with 94
input neurons (=the length of the appearance vector), 15 hidden neurons and
7 output neurons (=the number of expression categories). We used the back-
propagation algorithm to train the network and leave-one-out cross-validation
to determine the true test performance. The optimal number of training epochs
(which was around 1500) was estimated by iteratively searching around the
optimum found using a small stop-set. The training material consisted of 1512
appearance vectors that were automatically extracted and had an accurate AAM
fit.

Table 1 shows the results in the form of a confusion matrix when we force the
network to make a choice (by picking the highest output value) on the ‘Karolin-
ska Directed Emotional Faces’ set [15] containing 980 high quality facial images
showing one of the universal emotional expressions or a neutral expression. 89%
of all faces presented to the classifier is classified correctly, which is a very promis-
ing result as it is among the highest reported results on emotional expression
classification from static images.



Table 1. Performance of the 7-fold classifier on the Karolinska data set using leave-
one-out cross-validation

3.4 FACS classification

Although we have mainly focussed on the automatic classification of facial ex-
pressions in one of Ekman’s 6 universal emotional expression categories, we have
as a side-study, trained the system to give the FACS scoring of a face (using the
2002 revision including gradations). If this classifier performs well, this would
suggest that even local features can be modeled correctly by the AAM, without
requiring a training set specifically selected for this.

Action Units (AUs) described by the FACS do not necessarily have to be in-
dependent. In practice, there are many constraints on the co-occurrence of AUs.
This is reason to take a similar approach as we did for the emotional classifier
concerning the choice between building separate classifiers and building one large
classifier for all AUs at once. If there are constraints, these can be modeled in
the large network and outputs could be better adjusted to one another.

For some AUs, far too little training data was available to perform a mean-
ingful training. Only the 15 AUs present most frequently in the training set (AUs
1, 2, 4, 5, 6, 7, 9, 12, 15, 17, 20, 23, 24, 25 and 27) were therefore selected for
training. This limits the functionality of the system, but retraining the classifier
with more annotated faces will always remain an option for real applications.
Again, we used a 3-layer feedforward neural network, with 94 input neurons,
20 hidden neurons and 15 output neurons (=the number of selected AUs) and
use backpropagation with leave-one-out cross-validation. The training material
consisted of 858 appearance vectors of images from the Cohn-Kanade AU-Coded
Facial Expression Database [3] with an accurate AAM fit.

Table 2 shows the performance of the FACS classifier after training, where
a classification is considered correct if it does not deviate more than one point
on the five-point scale of intensity by which the training data is annotated. The
AUs are detected with an average accuracy of 86%, but it should be mentioned
that this still means that most classified faces will have one or more AUs scored
incorrectly. If we are only interested in the activation of one or two AUs, these



results are promising, but if we are looking for an accurate automatic FACS
scoring device, significant improvements are still needed.

Table 2. FACS classifier performance on 15 Action Units

Action Unit: 01 02 04 05 06 07 09 12 15 17 20 23 24 25 27 Average

Accuracy: .86 .88 .81 .86 .81 .89 .93 .83 .89 .86 .84 .83 .83 .90 .89 .86

4 Expression Analysis and Synthesis

The previous experiments have shown that the appearance vector contains ex-
pression information that can be used to classify a face model. Alternatively, it is
also possible to extract and isolate the information that is related to expressions,
which enables us to visualize the distinguishing features for a certain expression
and also allows expression synthesis.

4.1 Visualization of features relevant for emotional expression
classification

Blanz and Vetter (1999) have shown that the information concerning expressions
can be extracted from appearance vectors in a straightforward way. Consider two
images of the same individual with similar lighting and pose, one image showing
some expression and the other showing a neutral face. We can calculate the
difference between the two corresponding appearance vectors, which would give
us information about the expression shown for this person. By averaging over a
set of image-pairs, we can derive ‘prototypical vectors’ for a certain expression.

Besides some concerns about the reliability of this approach, since features
might be averaged out, another downside is the fact that although the derived
‘prototypical vectors’ can give some cues to what expressions look like, where
they are formed and what influence they have on shape and texture of a face,
they can not be used directly to analyze those features which are important to
distinguish one expression from another, even though this would be very useful
information to have for anyone working in the field of expression classification.

There is an alternative possibility however. Consider a feedforward neural
network, which is calculated as [1]:

yk = g(
M2∑
j=0

wkjf(
M1∑
i=0

wjixi)) (4)

Where yk is the output of the k-th output neuron; g and f are the activation
functions of the output layer and hidden layer respectively, wkj is the weight
between the k-th output neuron and the j-th hidden neuron, wji is the weight
between the j-th hidden neuron and the i-th input neuron and xi is the activation
of the i-th input neuron.



We train a network using face images showing a certain expression as positive
examples and using images of all other expressions as negative examples. This
network turns out to have an optimal (or nearly optimal) performance when it
has only one hidden neuron. In this case formula 4 can be greatly simplified to:

y1 = g(w1f(
M1∑
i=0

w1ixi)) (5)

Since all our input neurons are connected to all hidden neurons, we can also
write: y1 = g(w1f(wT x)) where x is the input vector and w is a vector containing
the weights between input neurons and hidden neuron.

By iteratively propagating an error over the network we can find an instance
of x which gives the output y1 = 1. This is not necessary however, as we can
already see in the formula above that w determines exactly the relative magni-
tude of the influence the input neurons will have on the output of the network,
since functions g and h are monotonously increasing and w1 only determines the
sign of this influence. w thus denotes the relevance of elements in the appearance
vector for the classifier output.

In order to visualize what w represents, we can create a new model instance
where we take w directly as the appearance vector (ba = w) with the bias value
left out of w. As explained in section 2, we can extract the uncompressed texture
and shape vectors from this new appearance vector using formulas 1 and 2, but
for visualization purposes we do not add the mean shape and texture. These
vectors are indicators of the relevance of either the positioning of landmark points
or the pixel intensity in a shape-free patch. The relevance of pixel intensities can
be visualized straightforwardly as shown in figure 2. All elements have been
converted to absolute values, and a global scaling and offset operator has been
used to create black pixels for the most significant indicators and white pixels
for what is considered not significant at all by the classifier.

Fig. 2. Relevance of texture information for the 6 emotional expression classifiers.



Some of the features we can distinguish are according to what we might have
expected beforehand, just to name a few, we can see the changes in the mouth
corners when a person smiles, the drawn together eyebrows for an angry face,
eyes being slightly closed and opened wide for the sad and surprised expression
respectively, the ‘lip puckerer’ in the sad expression and the widened nose in
the disgusted expression. Another indicator that the method is working success-
fully is that the irises are considered irrelevant for all expressions since their
appearance remains fairly constant for all expressions. Other features that are
considered very significant by the classifier are less obvious to explain and might
be interesting material for experts to look at and further analyze.

The vector containing the relevance of shape information does not consist
of coordinates, but rather of directed velocity vectors starting at the landmark
points we have defined. This can be visualized by drawing the velocity vectors
using the mean shape as a reference frame [21].

4.2 Expression synthesis through network analysis

In the previous experiment, we have modeled the information considered rele-
vant by an emotional expression classifier. If we on the other hand purely want
to synthesize an expression, the discriminating features between one emotional
expression and all the other different expression categories are of little use. There-
fore, we trained new neural networks using only neutral images and images of
one emotional expression category at a time. Thus, the discriminating features
the classifier is supposed to model are those features which discriminate between
a neutral face and a face showing some expression. Extracting the weight vector
from these networks and adding a multiple of them to an appearance vector
might proof to be a successful way for expression synthesis. Since the elements
of the appearance vector are orthogonal, this is a valid operation.

Figure 3 gives some examples of neutral faces which have been changed into
faces displaying a certain expression using the method above. As a reference, a
real picture of the person displaying this expression has been added.

The artificially created expressions look natural and convincing and only little
identity information appears to be lost. As we only have one fixed difference
vector for each expression, one might expect that the synthesized expressions
contain no personal traits. However, the two series on the right in figure 3 show
that variations in expressions can occur for different initial model instances.

5 Conclusions

By using the Active Appearance Model and directly using the appearance vectors
as classifier input, we have managed to achieve very promising classification
performance. Since we are using a model based method, lighting and orientation
differences have little, if any, effect on the classifier’s performance. Background
variation is no significant problem for the system and the system requires only
static images of reasonable quality; laboratory conditions are not required.



Fig. 3. Artificially created expressions; original images from [15].

An emotional expression classifier was trained which has an accuracy of 89%.
The emotional expressions that were investigated must thus have been repre-
sented quite accurately in the appearance vectors. Using a similar approach, a
classifier has been trained to detect very local facial movements which can be
coded using the Facial Action Coding System. This classifier has been trained
on 15 different facial movements (Action Units) and classifies each Action Unit
with an average performance of 86%.

Using trained classification networks, it is possible to visualize exactly what
the classifiers consider relevant/discriminating information for a certain expres-
sion. This provides us with accurate information concerning the areas of the face
which provide information that is important for a good classifier performance.
Further analysis of these results is needed in order to come to a more detailed
conclusion.

Again using information obtained from trained classifiers, a difference vector
can be extracted which characterizes a certain emotional expression. By adding
this difference vector to the appearance vector of a face model, we have shown
how expressions can be generated. This method seems to work rather well, as
only little personal information appears to be lost, while the generated expres-
sions are clearly identifiable and convincing to a human observer.
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15. D. Lundqvist, A. Flykt, and A. Öhman. The Karolinska Directed Emotional Faces
- KDEF. CD ROM from Department of Clinical Neuroscience, Psychology section,
Karolinska Institutet, 1998.

16. M. Nieber. Global structure of the ActiveModelLib. Software architecture descrip-
tion, Vicar Vision BV, Amsterdam, the Netherlands, 2003.

17. M. Pantic. Automatic analysis of facial expressions: The state of the art. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(12):1424–1445,
2000.

18. J.A. Russell and J.M. Fernandez-Dols, editors. The Psychology of Facial Expres-
sion. Cambridge University Press, 1997.

19. J.R. Shewchuk. Triangle: engineering a 2D quality mesh generator and Delaunay
triangulator. Applied Computational Geometry, FCRC96 Workshop, pages 203–
222, 1996.

20. K.K. Sung and T. Poggio. Example-based learning for view-based human face
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(1):39–51, 1998.

21. H. Van Kuilenburg. Expressions exposed: Model based methods for expression
analysis. Master’s thesis, Department of Philosophy, Utrecht University, The
Netherlands, 2005.


